Conformally covariant energy-momentum tensor for spin 2

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 15 L329
(http://iopscience.iop.org/0305-4470/15/6/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 15:57

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Conformally covariant energy-momentum tensor for spin 2

Bo-Wei Xu
Department of Physics, UCLA, Los Angeles, CA 90024 USA, and Department of Modern Physics, Lanzhou University, Lanzhou, China

Received 22 March 1982

Abstract

We derive the expression of the conformally covariant energy-momentum tensor for spin 2.

By starting from the conformally covariant Lagrangian, we derived a general expression of the conformally covariant energy-momentum tensor for spin 0,1 and $\frac{1}{2}$ (Xu 1981a,b). In this letter we shall discuss the case for the spin-2 tensor field.

The massless spin-2 tensor field denoted by symmetry tensor $h_{\mu \nu}$ transforms under the special conformal transformations as (Isham et al 1970, Barut and Xu 1982)

$$
\begin{equation*}
h_{\mu \nu}^{\prime}=\Omega\left[g_{\mu}^{\alpha} g_{\nu}^{\beta}+\left(c^{\lambda} x^{\sigma}-x^{\lambda} c^{\sigma}\right)\left(I_{\lambda \sigma}\right)_{\mu \nu}^{\alpha \beta}\right] h_{\alpha \beta} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(I_{\lambda \sigma}\right)_{\mu \nu}{ }^{\alpha \beta}=\left(g_{\lambda \mu} g_{\sigma}{ }^{\alpha}-g_{\lambda}{ }^{\alpha} g_{\sigma \mu}\right) g_{\nu}{ }^{\beta}+\left(g_{\lambda \nu} g_{\sigma}{ }^{\beta}-g_{\lambda}{ }^{\beta} g_{\sigma \nu}\right) g_{\mu}{ }^{\alpha} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega=1+2 c^{\mu} x_{\mu}+c^{2} x^{2} \tag{3}
\end{equation*}
$$

It is known that the conformally covariant Lagrangian of $h_{\mu \nu}$ has the following form (Barut and Xu 1982)

$$
\begin{equation*}
\mathscr{L}=-\frac{1}{2}\left(\partial_{\sigma} h_{\mu \nu}\right)^{2}+\frac{2}{3} \partial_{\sigma} h_{\mu \nu} \partial^{\nu} h^{\mu \sigma}+\frac{1}{6}\left(\partial_{\sigma} h\right)^{2}-\frac{1}{3} \partial_{\sigma} h \partial_{\mu} h^{\mu \sigma} \tag{4}
\end{equation*}
$$

where $h \equiv h_{\mu}{ }^{\mu}$. Under special conformal transformations, equation (3) becomes

$$
\begin{align*}
& \mathscr{L}^{\prime}=\Omega^{4} \mathscr{L}+2 c^{\lambda} R_{\lambda} \tag{5}\\
& R_{\lambda}=\partial^{\sigma} R_{\sigma \lambda} \\
& R_{\sigma \lambda}=\frac{1}{3}\left[\frac{1}{2} g_{\sigma \lambda}\left(h_{\mu \nu}\right)^{2}+2 h_{\sigma \nu} h_{\lambda}^{\nu}-h h_{\sigma \lambda}\right] \tag{6}
\end{align*}
$$

so both \mathscr{L} and \mathscr{L}^{\prime} lead to the same conformally convariant equation of motion

$$
\begin{equation*}
\partial^{2} h_{\mu \nu}-\frac{2}{3}\left(\partial_{\mu} \partial^{\sigma} h_{\nu \sigma}+\partial_{\nu} \partial^{\sigma} h_{\mu \sigma}\right)+\frac{1}{3} \partial_{\mu} \partial_{\nu} h+\frac{1}{3} g_{\mu \nu}\left(\partial^{\lambda} \partial^{\sigma} h_{\lambda \sigma}-\partial^{2} h\right)=0 . \tag{7}
\end{equation*}
$$

We now derive the conformally covariant energy-momentum tensor $\theta_{\mu \nu}$ of $h_{\mu \nu}$ using the same approach as previously. The resultant expression of $\theta_{\mu \nu}$ is

$$
\begin{align*}
& \theta_{\mu \nu}=T_{\mu \nu}-\frac{1}{2} \partial^{\lambda}\left\{\left[\pi_{\lambda}{ }^{\alpha \beta}\left(I_{\mu \nu}\right)_{\alpha \beta}{ }^{\sigma \rho}+\pi_{\mu}^{\alpha \beta}\left(I_{\nu \lambda}\right)_{\alpha \beta}^{\sigma \rho}+\pi_{\nu}^{\alpha \beta}\left(I_{\mu \lambda}\right)_{\alpha \beta}^{\sigma \rho}\right] h_{\sigma \rho}\right\} \\
&-\frac{1}{2} \partial^{2} R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \partial^{\lambda} \partial^{\rho} R_{\lambda \rho}+\frac{1}{2} \partial_{\mu} \partial^{\rho} R_{\rho \nu} \\
&+\frac{1}{2} \partial_{\nu} \partial^{\rho} R_{\rho \mu}-\frac{1}{6}\left(\partial_{\mu} \partial_{\nu}-g_{\mu \nu} \partial^{2}\right) R_{\lambda}{ }^{\lambda} \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
T_{\mu \nu}=g_{\mu \nu} \mathscr{L}-\pi_{\mu}{ }^{\alpha \beta} \partial_{\nu} h_{\alpha \beta} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi_{\mu}{ }^{\alpha \beta}=\partial \mathscr{L} / \partial \partial^{\mu} h_{\alpha \beta} . \tag{10}
\end{equation*}
$$

From (4), (6), (9) and (10), equation (8) can be rewritten in an explicit form

$$
\begin{align*}
& \theta_{\mu \nu}=g_{\mu \nu}\left[-\frac{7}{18}\left(\partial_{\lambda} h_{\alpha \beta}\right)^{2}-\frac{1}{3}\left(\partial^{\alpha} h_{\alpha \beta}\right)^{2}+\frac{1}{3} \partial^{1} h^{\alpha \beta} \partial_{\alpha} h_{\beta \lambda}\right. \\
&\left.+\frac{1}{18}\left(\partial_{\lambda} h\right)^{2}+\frac{1}{3} \partial^{\alpha} h \partial^{\beta} h_{\beta \alpha}\right] \\
&+\frac{2}{3} \partial^{\alpha} h_{\mu}{ }^{\beta} \partial_{\alpha} h_{\nu \beta}+\frac{4}{3} \partial^{\alpha} h_{\mu}{ }^{\beta} \partial_{\beta} h_{\nu \alpha}-\frac{4}{3} \partial^{\alpha} h_{\mu \nu} \partial^{\beta} h_{\beta \alpha} \\
&+\frac{8}{9} \partial_{\mu} h^{\alpha \beta} \partial_{\nu} h_{\alpha \beta}-\frac{2}{9} \partial_{\mu} h \partial_{\nu} h-\frac{4}{3} \partial_{\mu} h^{\alpha \beta} \partial_{\alpha} h_{\beta \nu} \\
&-\frac{4}{3} \partial_{\nu} h^{\alpha \beta} \partial_{\alpha} h_{\beta \mu}+\frac{2}{3} \partial_{\mu} h_{\nu}^{\alpha} \partial^{\beta} h_{\beta \alpha}+\frac{2}{3} \partial_{\nu} h_{\mu}{ }^{\alpha} \partial^{\beta} h_{\beta \alpha} \\
&+\frac{1}{6} \partial_{\mu} h \partial^{\alpha} h_{\alpha \nu}+\frac{1}{6} \partial_{\nu} h \partial^{\alpha} h_{\alpha \mu}-\frac{1}{6} \partial^{\alpha} h \partial_{\mu} h_{\nu \alpha} \\
&-\frac{1}{6} \partial^{\alpha} h \partial_{\nu} h_{\mu \alpha} \\
&+g_{\mu \nu}\left[h ^ { \alpha \beta } \left(\frac{1}{9} \partial^{2} h_{\alpha \beta}-\frac{2}{3} \partial_{\beta} \partial^{\lambda} h_{\lambda \alpha}+\frac{1}{2} \partial_{\alpha} \partial_{\beta} h\right.\right. \\
&\left.\left.+\frac{1}{6} g_{\alpha \beta} \partial^{\lambda} \partial^{\rho} h_{\lambda \rho}-\frac{1}{9} g_{\alpha \beta} \partial^{2} h\right)\right] \\
&+h_{\mu}{ }^{\alpha}\left(\frac{1}{3} \partial^{2} h_{\nu \alpha}-\frac{2}{3} \partial_{\nu} \partial^{\beta} h_{\beta \alpha}-\frac{1}{6} \partial_{\nu} \partial_{\alpha} h+\frac{2}{3} \partial_{\alpha} \partial^{\beta} h_{\beta \nu}\right) \\
&+h_{\nu}^{\alpha}\left(\frac{1}{3} \partial^{2} h_{\mu \alpha}-\frac{2}{3} \partial_{\mu} \partial^{\beta} h_{\beta \alpha}-\frac{1}{6} \partial_{\mu} \partial_{\alpha} h+\frac{2}{3} \partial_{\alpha} \partial^{\beta} h_{\beta \mu}\right) \\
&+h^{\alpha \beta}\left(\frac{2}{3} \partial_{\mu} \partial_{\alpha} h_{\beta \nu}+\frac{2}{3} \partial_{\nu} \partial_{\alpha} h_{\beta \mu}-\frac{1}{9} \partial_{\mu} \partial_{\nu} h_{\alpha \beta}-\frac{4}{3} \partial_{\alpha} \partial_{\beta} h_{\mu \nu}\right) \\
&-\frac{1}{6} h_{\mu \nu} \partial^{2} h+\frac{1}{6} h \partial^{2} h_{\mu \nu}-\frac{1}{6} h \partial_{\mu} \partial^{\alpha} h_{\alpha \nu}-\frac{1}{6} h \partial_{\nu} \partial^{\alpha} h_{\alpha \mu} \\
&+\frac{1}{9} h \partial_{\mu} \partial_{\nu} h, \tag{11}
\end{align*}
$$

and $\theta_{\mu \nu}$ has the properties

$$
\begin{equation*}
\partial^{\mu} \theta_{\mu \nu}=0 \quad \theta_{\mu \nu}=\theta_{\nu \mu} \quad \theta_{\mu}^{\mu}=0 . \tag{12}
\end{equation*}
$$

I should like to thank Professor A O Barut, Professor C Fronsdal and Dr J Fang for useful discussions.

References

